# SUMMARY PROCESS VALVES MULTIPLE FLUIDS



|     | MULTIPLE-FLUID PROCESS VALVES                            | <b>B3</b> .2  |
|-----|----------------------------------------------------------|---------------|
|     | • SOLENOID VALVES, SERIES EV-FLUID                       | <b>B3</b> .4  |
|     | SOLENOID VALVES, SERIES EV-FLUID, DIRECT ACTING          | <b>B3</b> .5  |
|     | SOLENOID VALVES, SERIES EV-FLUID, SERVO-ASSISTED ACTION  | <b>B3</b> .11 |
| , i | SOLENOID VALVES, SERIES EV-FLUID, MIXED ACTION           | <b>B3</b> .15 |
|     | COILS AND CONNECTORS FOR EV-FLUID SERIES SOLENOID VALVES | <b>B3</b> .17 |

# **MULTIPLE-FLUID PROCESS VALVES**

There are products designed for normal operation with compressed air that are not suited for application in certain industrial sectors. Let's take, for example, fluid metering plants, steam-conveying plants or chemicals treatment plants. These applications, which are identified by the generic term of "process industry", require the use of component parts that are designed and manufactured with specific materials, undergo special treatments and engineered solutions, featuring particular requirements.

This section of the catalogue illustrates a vast range of products best suited to intercept and control the flow of fluids, such as water, steam, mineral oi and numerous chemicals.

More specifically, the range includes solenoid valves (series EV-FLUID), stopper pneumatic valves (series PV-FLUID\*) and ball or butterfly valves with a rotary actuator (series RV-FLUID\*).

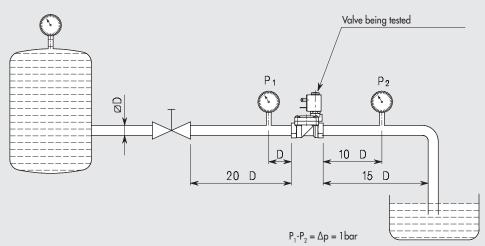
Solenoid valves can be classified according to their function (2/2 NC, 2/2 NO, 3/2 NC and NO), type of operation (direct-acting, servo-assisted action or mixed action), the threading of ports, the size of the orifice, the material of the body (brass or stainless steel) and the gasket materials.

Ball-acting valves can be classified according to their function (2- or 3-way), the threading of ports, the orifice, the actuator interface (to ISO 5211), the material of the body (brass or stainless steel) and the gasket materials. Butterfly valves, which can be the "Wafer" type for installation between pipes or the Lug type for installation at the end of the system, are generally made of painted cast iron and come with orifices in various diameters and gaskets in different materials.



The main materials used for gaskets are NBR, FKM-FPM, EPDM and PTFE.

NBR is used at medium temperatures with water, air, mineral oils and hydrocarbon media; FKM.FPM is used at medium-high temperatures, with the exception of steam; EPDM is best suited for steam and detergents; PTFE is suite for general use at high temperatures. The precise temperature range is specified for each family. The compatibility table can be consulted by logging on to www.metalwork.it.


\* Products available soon

#### CALCULATING THE FLOW RATE

#### Each valve has a flow coefficient kv.

Given the acceptable pressure drop, the media type and the working pressure, with this data it is possible to calculate the flow rate and the sizing. This coefficient is determined by way of experimentation, according to the standard VDE 2173 and it represents the quantity of water passing through the valve with a differential pressure of 1 bar and a temperature between  $5^{\circ}$ C and  $40^{\circ}$ C.

#### kv coefficient measuring circuit



DISTRIBUTORS

MULTIPLE-FLUID PROCESS VALVES



Liquids: Q= kv 
$$\sqrt{\frac{\Delta p}{\rho}}$$
  
Gas:  $\Delta p = \Delta p < \frac{P_1}{2}$  Q<sub>n</sub> = 514 x kv  $\sqrt{\frac{\Delta p \times P_2}{\rho_n x (273 + t)}}$   
 $\Delta p = \Delta p > \frac{P_1}{2}$  Q<sub>n</sub> = 257 x kv  $\frac{P_1}{\sqrt{\rho_n (273 + t)}}$   
Air:  $\Delta p = \Delta p < \frac{P_1}{2}$  Q<sub>n</sub> = 26 x kv  $\sqrt{\Delta p \times P_2}$   
 $\Delta p = \Delta p > \frac{P_1}{2}$  Q<sub>n</sub> = kv x P\_1 x 13  
Vapour:  $\Delta p = \Delta p < \frac{P_1}{2}$  G= 31.6 x kv  $\sqrt{\frac{\Delta p}{V_2}}$   
 $\Delta p = \Delta p > \frac{P_1}{2}$  G= 31.6 x kv  $\sqrt{\frac{P_1}{V_1}}$ 

Below are some examples of specific gravities of liquid substances, gases or vapours

| Liquid substances |             |                    | Gases and vapours at 20°C and 1atm* |                         |                    |  |  |  |
|-------------------|-------------|--------------------|-------------------------------------|-------------------------|--------------------|--|--|--|
| Liquid            | Temperature | Specific weight    | Gases or vapours                    |                         | Specific weight    |  |  |  |
|                   | °C          | kg/dm <sup>3</sup> |                                     | Relative density to air | gr/dm <sup>3</sup> |  |  |  |
| Water, sea        | 77°F        | 1.025              | Air *                               | 1.00                    | 1.205              |  |  |  |
| Water, pure       | 4           | 1                  | nitrogen (atomospheric)             | 0.97                    | 1.172              |  |  |  |
| Ethylene glycol   | 25          | 1.1                | Water vapor                         | 0.62                    | 0.749              |  |  |  |
| Milk              | 15          | 1.035              |                                     |                         |                    |  |  |  |

\* NTP - Normal Temperature and Pressure - is defined as air at 20°C and 1 atm. Specific gravity is the ratio between the density (mass per unit volume) of the actual gas and the density of air, specific density has no dimension. The density of air at NTP is 1.205 kg/m<sup>3</sup>.

The EV-FLUID series consists of a vast range of solenoid valves, with a brass or stainless steel body, suited to intercept the different types of fluid. Available in 2/2 or 3/2, normally closed or normally open, and with different types of action: direct, servo-assisted or mixed (also called assisted-lift).

The size of the inlet and outlet threads, as well as that of the nominal orifice, can be chosen from among a vast range.

Versions with NBR, FKM/FPM, EPDM or PTFE gaskets are available, depending on the models.

The coils, which are designed and optimized specifically for this type of solenoid valves, are available for operation with different voltage ratings. They are divided by power and dimension into four types (type 2, type 3, type 4 and type 5). The coupling between each solenoid valve and the type of matching coil is illustrated in the dedicated section of the catalogue.



#### **RESPONSE TIME**

The Response time of a solenoid valve series EV-FLUID, is the period passing between the energisation (or de-energisation) of the coil and the moment when the outlet pressure reaches the 50% of its peak.

The response time depends from the type of valve, the nature of the medium, the pressure and the current (AC or DC), if these value are measured at the moment of electrical connection or disconnection.

| Tipologia                          | Response tim  | e [ms] at 6 bar | Notes                        |  |  |  |  |
|------------------------------------|---------------|-----------------|------------------------------|--|--|--|--|
|                                    | Opening (TRA) | Closing (TRR)   |                              |  |  |  |  |
| 2 and 3 ways direct acting NC      | 8             | 25              |                              |  |  |  |  |
| 2 and 3 ways direct acting NO      | 25            | 8               |                              |  |  |  |  |
| Servoassisted NC                   |               |                 |                              |  |  |  |  |
| 3/8″ - 1/2″                        | 30            | 50              | with liquids +50% ÷ +150%    |  |  |  |  |
| 3/4" - 1"                          | 50            | 70              | - depending on the viscosity |  |  |  |  |
| Servoassisted NO                   |               |                 | depending on the viscosity   |  |  |  |  |
| 3/8″ - 1/2″                        | 50            | 30              |                              |  |  |  |  |
| 3/4" - 1"                          | 70            | 50              |                              |  |  |  |  |
| Servoassisted 1 1/4" - 1 1/2" - 2" | Adjust        | able time       |                              |  |  |  |  |

#### NOTES

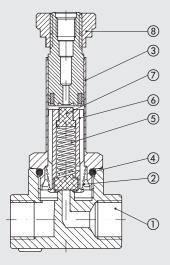


# SOLENOID VALVES, SERIES EV-FLUID, DIRECT ACTING

In direct-acting EV-FLUID series solenoid valves the orifice is closed (or opened) by the movement of a rubber poppet placed on a moving core made of ferromagnetic steel.

made of ferromagnetic steel. The moving core, which is normally kept in the resting position by a spring, is moved thanks to the action of the magnetic field generated by the coil that is mounted on the valve. The sleeve supporting the coil can be retracted or incorporated into the valve body (depending on the model).

Available functions are 2/2 NC, 2/2 NO and 3/2 NC (3/2 NO available on request for some models)


These solenoid valves can operate at a minimum pressure of 0 bar.

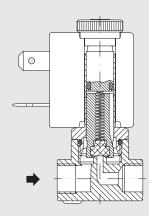


|                                         |    | NDD                  |                           | 50044                   | DTEE       |  |  |
|-----------------------------------------|----|----------------------|---------------------------|-------------------------|------------|--|--|
| TECHNICAL DATA                          |    | NBR                  | FPM/FKM                   | EPDM                    | PTFE       |  |  |
| Max operating frequency (with air)      | Hz | 2                    |                           |                         |            |  |  |
| Power consumption                       |    |                      | C: 5 - 6.5 -10 - 27 W /   |                         |            |  |  |
| Voltage available                       |    |                      | 12 - 24VDC / 24 - 110     | 0 - 220 VAC 50/60 H     | z          |  |  |
| Voltage tolerance                       | %  |                      | DC: ±10 / A               |                         |            |  |  |
| Type of protection                      |    | IP 65 with connector |                           |                         |            |  |  |
| Fluid temperature                       | °C | -10 ÷ +90            | -10 ÷ +140                | -10 ÷ +140              | -10 ÷ +180 |  |  |
| Ambient temperature                     | °C | with c               | coil C.I F: -10 ÷ +55; co | on with coil C.I H: -10 | ÷ +80      |  |  |
| Maximum fluid viscosity                 |    |                      | 25 cSt                    | (mm²/s)                 |            |  |  |
| Pressure range, flow rate, weight       |    |                      | See dimensions a          | nd ordering codes       |            |  |  |
| Maximum coil nut torque                 | Nm |                      | 1.                        | .5                      |            |  |  |
| Usable fluids / Materials compatibility |    |                      | e used with neutral or :  |                         |            |  |  |
|                                         |    |                      | of chemical compatibil    |                         |            |  |  |
|                                         |    | on www               | .metalwork.it or contac   | t Metal Work technica   | service)   |  |  |
|                                         |    |                      |                           |                         |            |  |  |
|                                         |    |                      |                           |                         |            |  |  |

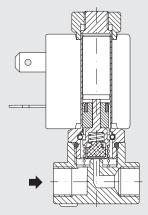
#### **COMPONENTS**

- ① BODY: brass or stainless steel
- 2 SPRING: stainless steel
- ③ SLEEVE
- (4) GASKET
- (5) MOLLA: stainless steel
- 6 MOBILE CORE
- ⑦ GASKET
- (8) RING NUT FOR COIL FIXING




#### 2-WAY DIRECT ACTING

Two-way solenoid valves have an inlet and an outlet connection in the valve body; the orifice is opened or closed by the poppet incorporated in the moving core.


**Normally-closed version** (2/2 NC): in the resting position, the fluid is intercepted by the poppet; when connected to an electrical supply, the orifice opens allowing the inlet to feed the user port.

**Normally-open version** (2/2 NO): in the resting position, the orifice is opened and the air is supplied through the user port. When connected to an electrical supply, the orifice closes. In both cases, operation only depends on the magnetic field produced by the passage of current through the coil. Solenoid valves can work at zero pressure.

#### NORMALLY CLOSED (NC)

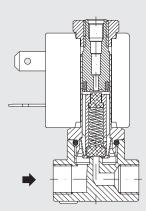


#### NORMALLY OPEN (NO)

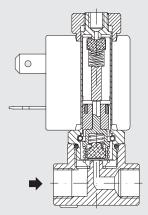


#### **3-WAY DIRECT ACTING**

Three-way solenoid valves have an inlet connection and a user port in the valve body, plus an exhaust connection in the fixed core; The inlet and outlet orifices are opened or closed directly by the poppets in the moving core.


**Normally-closed version** (3/2 NC): in the resting position, the incoming fluid is intercepted by the poppet and the user port communicates with the exhaust port. When connected to an electric supply, the inlet orifice closes, the open exhaust port communicates with the user port. The exhaust port is closed.

**Normally-open version** (3/2 NO): in the resting position, the orifice is opened and the air is supplied through the user port. The exhaust port is closed. When connected to an electric supply, the inlet orifice closes and the open exhaust port communicates with the user port.


In both cases, operation only depends on the magnetic field produced by the coil.

Solenoid valves can work at zero pressure.

#### NORMALLY CLOSED (NC)



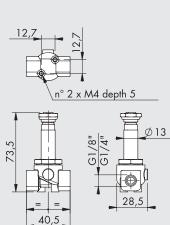
NORMALLY OPEN (NO)

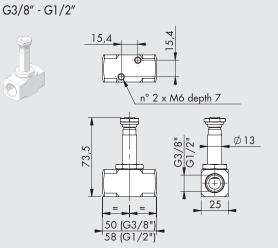


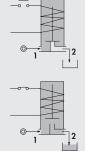
DISTRIBUTORS

DISTRIBUTORS

solenoid valves, series ev-fluid, direct acting





#### **DIMENSIONS AND ORDERING CODES**


#### VERSION 2/2 NC, BRASS VALVE BODY

#### G1/8" - G1/4"









Z

WW

| Code        | Threaded port | Air hole Ø | kv factor | Type of coil | Operating press | ure [bar] * | Weight |
|-------------|---------------|------------|-----------|--------------|-----------------|-------------|--------|
|             |               | [mm]       | [m³/h]    |              | AC              | DC          | [g]    |
| W_910100001 | 1/8"          | 1.5        | 0.07      | 2            | 0 ÷ 30          | 0 ÷ 26      | 180    |
| W_910100002 | 1/8″          | 2          | 0.1       | 2            | 0 ÷ 22          | 0 ÷ 20      | 180    |
| W_910100010 | 1/4"          | 2.5        | 0.15      | 2            | 0 ÷ 16          | 0 ÷ 14      | 180    |
| W_910100011 | 1/4"          | 3.5        | 0.32      | 2            | 0 ÷ 10          | 0 ÷ 8       | 180    |
| W_910100012 | 1/4"          | 4.5        | 0.41      | 2            | 0 ÷ 6.5         | 0 ÷ 3.5     | 180    |
| W_910100013 | 1/4"          | 5.2        | 0.47      | 5            | 0 ÷ 10          | 0 ÷ 9       | 180    |
| W_910100017 | 1/4"          | 6.4        | 0.64      | 5            | 0 ÷ 5           | 0 ÷ 4.5     | 180    |
| W_910100020 | 3/8"          | 4          | 0.36      | 2            | 0 ÷ 8           | 0 ÷ 5       | 240    |
| W_910100021 | 3/8"          | 3.5        | 0.32      | 2            | 0 ÷ 10          | 0 ÷ 8       | 240    |
| W_910100022 | 3/8"          | 4.5        | 0.41      | 2            | 0 ÷ 6.5         | 0 ÷ 3.5     | 240    |
| W_910100030 | 1/2"          | 5.2        | 0.47      | 5            | 0 ÷ 10          | 0 ÷ 9       | 240    |
| W_910100031 | 1/2"          | 6.4        | 0.64      | 5            | 0 ÷ 5           | 0 ÷ 4.5     | 240    |
| W_910100032 | 1/2"          | 3.5        | 0.32      | 2            | 0 ÷ 10          | 0 ÷ 8       | 240    |
|             |               |            |           |              |                 |             |        |

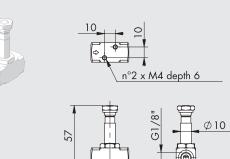
To complete the code enter:

0 for NBR gaskets E for EPDM gaskets V for FKM/FPM gaskets T for PTFE gaskets \* The maximum allowable pressure for steam is 6 bar with PTFE gaskets and 2.5 bar with EPDM gaskets

#### VERSION 2/2 NC, BRASS VALVE BODY AND DIAPHRAGM POPPET

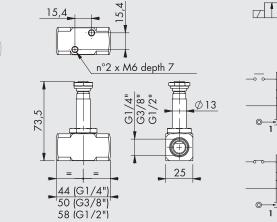


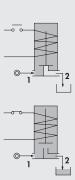





| Code        | Threaded port | Air hole Ø | Kv factor | Type of coil | Operating pressure [bar] * |          | Weight |  |
|-------------|---------------|------------|-----------|--------------|----------------------------|----------|--------|--|
|             |               | [mm]       | [m³/h]    |              | AC                         | DC       | [g]    |  |
| W_910700001 | 1/2"          | 12         | 2.2       | 5            | 0 ÷ 0.8                    | 0 ÷ 0.4  | 330    |  |
| W_910700002 | 3/4"          | 18         | 4.5       | 5            | 0 ÷ 0.2                    | 0 ÷ 0.12 | 630    |  |


To complete the code enter:


0 for NBR gaskets E for EPDM gaskets V for FKM/FPM gaskets


\* The maximum allowable pressure for steam is 2.5 bar with EPDM gaskets



35







TW

| Code        | Threaded port | Air hole Ø | Kv factor           | Type of coil | Operating p | ressure [bar] * | Weight |  |
|-------------|---------------|------------|---------------------|--------------|-------------|-----------------|--------|--|
|             |               | [mm]       | [m <sup>3</sup> /h] |              | AC          | DC              | [g]    |  |
| W_910300001 | 1/8"          | 1.5        | 0.06                | 3            | 0 ÷ 16      | 0 ÷ 16          | 100    |  |
| W_910300002 | 1/8"          | 2.5        | 0.14                | 3            | 0 ÷ 8       | 0 ÷ 5.5         | 100    |  |
| W_910300003 | 1/8"          | 3.1        | 0.19                | 4            | 0 ÷ 8       | 0 ÷ 4           | 100    |  |
| W_910300010 | 1/4"          | 2          | 0.1                 | 2            | 0 ÷ 22      | 0 ÷ 20          | 240    |  |
| W_910300011 | 1/4"          | 3.5        | 0.32                | 2            | 0 ÷ 10      | 0 ÷ 8           | 240    |  |
| W_910300020 | 3/8"          | 3.5        | 0.32                | 2            | 0 ÷ 10      | 0 ÷ 8           | 240    |  |
| W_910300021 | 3/8"          | 5.2        | 0.47                | 5            | 0 ÷ 10      | 0 ÷ 9           | 240    |  |
| W_910300022 | 3/8"          | 6.4        | 0.64                | 5            | 0 ÷ 5       | 0 ÷ 4.5         | 240    |  |
| W_910300030 | 1/2"          | 5.2        | 0.47                | 5            | 0 ÷ 10      | 0 ÷ 9           | 240    |  |
| W_910300031 | 1/2"          | 6.4        | 0.64                | 5            | 0 ÷ 5       | 0 ÷ 4.5         | 240    |  |
| W 910300032 | 1/2"          | 3.5        | 0.32                | 2            | 0 ÷ 10      | 0 ÷ 8           | 240    |  |

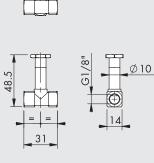
To complete the code enter:

**0** for NBR gaskets **E** for EPDM gaskets

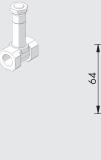
18

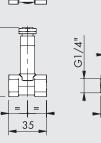
V for FKM/FPM gaskets T for PTFE gaskets \* The maximum allowable pressure for steam is 6 bar with PTFE gaskets and 2.5 bar with EPDM gaskets

Ø13


Ŧ

20





G1/8″









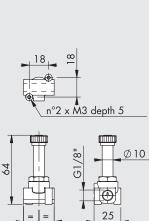






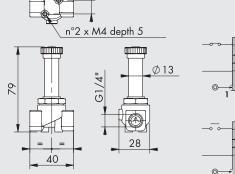
2

| Code        | Threaded port | Air hole Ø | Kv factor | Type of coil | Operating pressure [bar] |       | Weight |  |
|-------------|---------------|------------|-----------|--------------|--------------------------|-------|--------|--|
|             | -             | [mm]       | [m³/h]    |              | AC                       | DC    | [g]    |  |
| WV910500001 | 1/8"          | 1.5        | 0.06      | 3            | 0 ÷ 14                   | 0 ÷ 3 | 40     |  |
| WV910500002 | 1/4"          | 3          | 0.18      | 2            | 0 ÷ 14                   | 0 ÷ 6 | 100    |  |
| WV910500003 | 1/4"          | 4          | 0.26      | 2            | 0 ÷ 7                    | 0 ÷ 3 | 100    |  |


DISTRIBUTORS

Solenoid Valves, Series ev-Fluid, Direct Acting




#### VERSION 2/2 NO, BRASS VALVE BODY





28





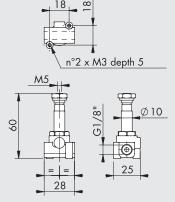
2

 $\Box$ 

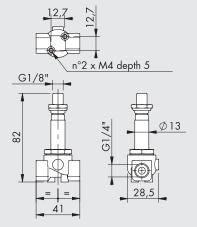
W

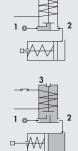
| Code Threaded p |      | hreaded port Air hole Ø | Kv factor Type | Type of coil | Operating pre | essure [bar] * | Weight |  |
|-----------------|------|-------------------------|----------------|--------------|---------------|----------------|--------|--|
|                 |      | [mm]                    | [m³/h]         |              | AC            | DC             | [g]    |  |
| W_910800003     | 1/8" | 2                       | 0.09           | 3            | 0 ÷ 8         | 0 ÷ 8          | 80     |  |
| W_910800004     | 1/8" | 2.5                     | 0.14           | 3            | 0 ÷ 4.5       | 0 ÷ 4.5        | 80     |  |
| W_910800008     | 1/4" | 2.5                     | 0.15           | 2            | 0÷12          | -              | 180    |  |
| W_910800009     | 1/4" | 3.5                     | 0.32           | 2            | 0 ÷ 7         | -              | 180    |  |
| W_910800010     | 1/4" | 4.5                     | 0.41           | 2            | 0 ÷ 4.5       | -              | 180    |  |
| W_910800011     | 1/4" | 5.2                     | 0.47           | 2            | 0 ÷ 3         | -              | 180    |  |
| W_910810009     | 1/4" | 3.5                     | 0.32           | 2            | -             | 0 ÷ 4          | 180    |  |
| W_910810010     | 1/4" | 4.5                     | 0.41           | 2            | -             | 0 ÷ 3          | 180    |  |
| W_910810011     | 1/4" | 5.2                     | 0.47           | 2            | -             | 0 ÷ 2.2        | 180    |  |

To complete the code enter:


0 for NBR gaskets E for EPDM gaskets  ${\bf V}$  for FKM/FPM gaskets

\* The maximum allowable pressure for steam is 2.5 bar with EPDM gaskets


#### VERSION 3/2 NC, BRASS VALVE BODY


G1/8″

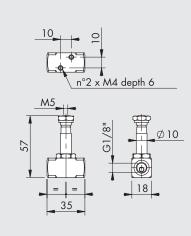


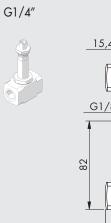


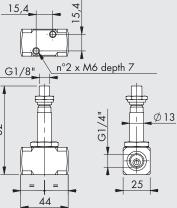
G1/4″

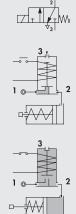





| Code        | Threaded port | port Air hole Ø Kv factor Type of coil |        | Type of coil | Operating pressure [bar] * |        | Weight |  |
|-------------|---------------|----------------------------------------|--------|--------------|----------------------------|--------|--------|--|
|             |               | [mm]                                   | [m³/h] |              | AC                         | DC     | [g]    |  |
| W_911000002 | 1/8"          | 1.5                                    | 0.06   | 3            | 0 ÷ 10                     | 0 ÷ 10 | 60     |  |
| W_911000003 | 1/8"          | 2                                      | 0.09   | 3            | 0 ÷ 6                      | 0 ÷ 6  | 60     |  |
| W_911000004 | 1/4"          | 1.5                                    | 0.07   | 2            | 0 ÷ 20                     | 0 ÷ 20 | 200    |  |
| W_911000005 | 1/4"          | 2                                      | 0.11   | 2            | 0 ÷ 13                     | 0 ÷ 13 | 200    |  |
| W_911000006 | 1/4"          | 2.5                                    | 0.16   | 2            | 0 ÷ 10                     | 0 ÷ 10 | 200    |  |


To complete the code enter:


**0** for NBR gaskets **E** for EPDM gaskets V for FKM/FPM gaskets


\* The maximum allowable pressure for steam is 2.5 bar with EPDM gaskets











| Code        | Threaded port | Air hole Ø | Kv factor | Type of coil | Operating pressure [bar] * |        | Weight |  |
|-------------|---------------|------------|-----------|--------------|----------------------------|--------|--------|--|
|             |               | [mm]       | [m³/h]    |              | AC                         | DC     | [g]    |  |
| W_911200002 | 1/8"          | 1.5        | 0.06      | 3            | 0 ÷ 10                     | 0 ÷ 10 | 100    |  |
| W_911200003 | 1/8"          | 2          | 0.09      | 3            | 0 ÷ 6                      | 0 ÷ 6  | 100    |  |
| W_911200005 | 1/4"          | 2          | 0.11      | 2            | 0 ÷ 20                     | 0 ÷ 15 | 240    |  |
| W_911200006 | 1/4"          | 2.5        | 0.16      | 2            | 0 ÷ 20                     | 0 ÷ 15 | 240    |  |

To complete the code enter:

**0** for NBR gaskets **E** for EPDM gaskets

 ${\bf V}$  for FKM/FPM gaskets

\* The maximum allowable pressure for steam is 2.5 bar with EPDM gaskets

#### NOTES

DISTRIBUTORS

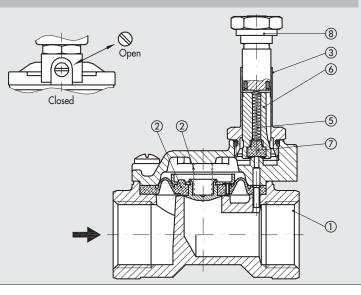


#### SOLENOID VALVES, SERIES EV-FLUID, SERVO-ASSISTED ACTION

Le valvole ad azionamento assistito serie EV-FLUID vengono utilizzate quando si necessita un'apertura di passaggio di grandi dimensioni, senza comunque rinunciare alla pressione. Anzi, in questo tipo di valvole la pressione del fluido aiuta a mantenere chiusa la guarnizione. Nella versione 2/2 NC, quando la bobina è diseccitata, la guarnizione collegata alla membrana mantiene chiuso il passaggio del fluido tra l'ingresso e l'uscita. La chiusura della membrana è assistita dalla pressione del fluido che, attraverso un piccolo foro, riempie la camera posta sopra la membrana.

Quando la bobina viene eccitata, l'elettropilota mette in scarico la camera superiore e la membrana si apre, consentendo il passaggio del fluido attraverso l'orifizio superiore.

Nella versione 2/2 NO, quando la bobina è diseccitata, il passaggio del fluido tra l'ingresso e l'uscita è aperto e la camera posta al di spora della membrana è vuota. Eccitando la bobina, l'elettropilota consente al fluido di fluire nella camera superiore alla membrana, permettendo in tal modo la chiusura dell'orifizio per mezzo della guarnizione collegata alla membrana.


Sono disponibili le funzioni 2/2 NC e 2/2 NO, corpo in ottone con guarnizioni in NBR; FKM/FPM o EPDM, oppure corpo inox con guarnizioni in FKM/FPM. In generale, queste elettrovalvole hanno una pressione minima di funzionamento superiore a 0 bar.

|--|

| TECHNICAL DATA                          |    | NBR                          | FPM/FKM                          | EPDM                         |  |  |
|-----------------------------------------|----|------------------------------|----------------------------------|------------------------------|--|--|
| Max operating frequency (with air)      | Hz |                              | 2                                |                              |  |  |
| Power consumption                       |    |                              |                                  |                              |  |  |
| Voltage available                       |    | 12 - 24                      | VDC / 24 - 110 - 220 VAC 5       | 0/60 Hz                      |  |  |
| Voltage tolerance                       | %  |                              | DC: ±10 / AC: -10 ÷ +15          |                              |  |  |
| Type of protection                      |    |                              | IP 65 with connector             |                              |  |  |
| Fluid temperature                       | °C | -10 ÷ +90                    | -10 ÷ +140                       | -10 ÷ +140                   |  |  |
| Ambient temperature                     | °C | with coil C.I I              | : -10 ÷ +55; con with coil C.I   | H: -10 ÷ +80                 |  |  |
| Maximum fluid viscosity                 |    |                              | 25 cSt (mm <sup>2</sup> /s)      |                              |  |  |
| Pressure range, flow rate, weight       |    | Se                           | e dimensions and ordering co     | des                          |  |  |
| Maximum coil nut torque                 | Nm |                              | 1.5                              |                              |  |  |
| Usable fluids / Materials compatibility |    | Valves that can be used      | with neutral or slightly aggress | sive liquid and gas fluids.  |  |  |
|                                         |    | (Refer to the tables of chen | nical compatibility of materials | in contact with the fluid on |  |  |
|                                         |    | on www.metalw                | ork.it or contact Metal Work t   | echnical service)            |  |  |
|                                         |    |                              |                                  |                              |  |  |
|                                         |    |                              |                                  |                              |  |  |

#### COMPONENTS

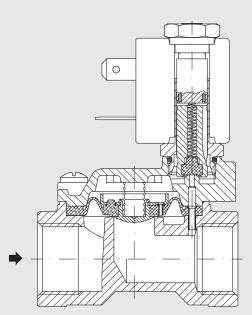
- ① BODY: brass or stainless steel
- ② SPRING: stainless steel
- ③ SLEEVE
- (4) DIAPHRAGM
- (5) SPRING: stainless steel
- **6** MOBILE CORE
- ⑦ GASKET
- **⑧** RING NUT FOR COIL FIXING

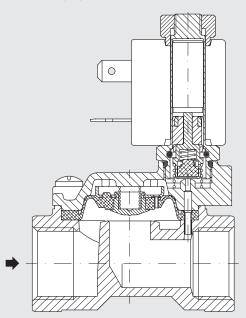


With larger orifices, the static pressure to be controlled with the magnetic field produced by the coil increases: for this reason these models, in which the fluid helps the main poppet to open or close, are used.

**Normally closed** (2/2 NC) version: with an inlet and outlet port in the valve body; when the coil is not energized, the fluid is intercepted by the main poppet that can be either a diaphragm or a piston.

In this mode, the fluid flows through a small hole in the diaphragm and acts on the two sides of the main poppet and helps to close it. When connected to an electrical supply, the secondary, or piloting, orifice opens, thus allowing the fluid to exhaust, which closes the main poppet. This generates increased force in the lower part of the main actuator, which acts on the opening, the poppet is raised from the orifice and the air supply is entirely connected to the user port.


Operation in these versions does not depend only on the magnetic field produced by the coil, it only needs a minimum input pressure that moves the diaphragm or piston, controlling its rigidity and keeping it raised from the main orifice (minimum working  $\Delta p$ ).


**Normally open version** (2/2 NO): with an inlet port and a user port in the valve body; when the secondary poppet is not energized, it communicates with the user port; a minimum pressure difference between the air supply and the user port allows the main poppet to open. When connected to an electric supply, the secondary orifice closes and the balance between the pressures on the two sides of the main poppet closing on the main orifice is restored.

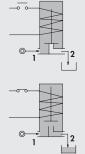
A minimum operating pressure is required in this version as well.

#### NORMALLY CLOSED (NC)

NORMALLY OPEN (NO)






SOLENOID VALVES, SERIES EV-FLUID, SERVO-ASSISTED ACTION DISTRIBUTORS



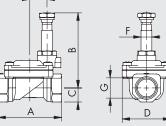
### **DIMENSIONS AND ORDERING CODES**

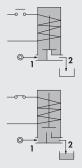
#### VERSION 2/2 NC, BRASS VALVE BODY





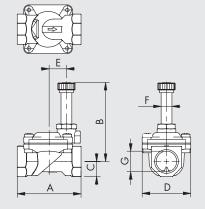
| Code        | G      | Α   | В   | С  | D   | E  | F  | Air hole Ø | Kv factor | Type of coil | Operating pr | essure [bar] * | Weight |
|-------------|--------|-----|-----|----|-----|----|----|------------|-----------|--------------|--------------|----------------|--------|
|             |        |     |     |    |     |    |    | [mm]       | [m³/h]    |              | AC           | DC             | [g]    |
| W_910200001 | 1/4"   | 49  | 65  | 11 | 32  | 16 | 10 | 10         | 1.5       | 3            | 0.15 ÷ 15    | 0.15 ÷ 15      | 180    |
| W_910200002 | 3/8"   | 49  | 65  | 11 | 32  | 16 | 10 | 10         | 1.7       | 3            | 0.15 ÷ 15    | 0.15 ÷ 15      | 190    |
| W_910200003 | 3/8"   | 59  | 70  | 14 | 45  | 16 | 10 | 12         | 2.2       | 3            | 0.15 ÷ 15    | 0.15 ÷ 15      | 370    |
| W_910200004 | 1/2"   | 59  | 70  | 14 | 45  | 16 | 10 | 12         | 2.5       | 3            | 0.15 ÷ 15    | 0.15 ÷ 15      | 340    |
| W_910200005 | 3/4"   | 79  | 76  | 18 | 55  | 16 | 10 | 18         | 5.5       | 3            | 0.15 ÷ 13    | 0.15 ÷ 13      | 600    |
| W_910200006 | 1"     | 96  | 85  | 20 | 72  | 16 | 10 | 25         | 10.2      | 3            | 0.15 ÷ 10    | 0.15 ÷ 10      | 1000   |
| W_910200007 | 1-1/4" | 142 | 105 | 28 | 102 | 21 | 13 | 37         | 18        | 2            | 0.15 ÷ 10    | 0.15 ÷ 10      | 2880   |
| W_910200008 | 1-1/2" | 142 | 105 | 28 | 102 | 21 | 13 | 37         | 21        | 2            | 0.15 ÷ 10    | 0.15 ÷ 10      | 2730   |
| W_910200009 | 2"     | 158 | 115 | 35 | 119 | 21 | 13 | 50         | 36        | 2            | 0.15 ÷ 10    | 0.15 ÷ 10      | 4180   |
|             |        |     |     |    |     |    |    |            |           |              |              |                |        |

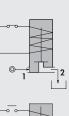

To complete the code enter:


0 for NBR gaskets E for EPDM gaskets  ${\bf V}$  for FKM/FPM gaskets

\* The maximum allowable pressure for steam is 2.5 bar with EPDM gaskets

#### VERSION 2/2 NC, STAINLESS STEEL VALVE BODY, FKM/FPM GASKETS






| [mm]         [m³/h]         AC         DC           WV910400001         3/8"         59         70         11         45         16         10         12         2.2         3         0.15 ÷ 15         0.15 ÷ 15           WV910400002         1/2"         59         70         13         45         16         10         12         2.5         3         0.15 ÷ 15         0.15 ÷ 15           WV910400003         2/4"         79         76         18         55         16         10         18         55         3         0.15 ÷ 13         0.15 ÷ 13 |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| WV910400002         1/2"         59         70         13         45         16         10         12         2.5         3         0.15 ÷ 15         0.15 ÷ 15                                                                                                                                                                                                                                                                                                                                                                                                        | lg] |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 250 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 270 |
| <b>WV910400003</b> 3/4" 79 76 18 55 16 10 18 5.5 3 0.15 ÷ 13 0.15 ÷ 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500 |
| <b>WV910400004</b> 1" 96 85 20 72 16 10 25 10.2 3 0.15÷10 0.15÷10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 900 |









| Code        | G    | Α  | В  | С  | D  | E  | F  | Air hole Ø | Kv factor | Type of coil | Operating pr | essure [bar] * | Weight |
|-------------|------|----|----|----|----|----|----|------------|-----------|--------------|--------------|----------------|--------|
|             |      |    |    |    |    |    |    | [mm]       | [m³/h]    |              | AC           | DC             | [g]    |
| W_910900001 | 1/4" | 49 | 65 | 11 | 32 | 16 | 10 | 10         | 1.5       | 3            | 0.15 ÷ 15    | 0.15 ÷ 15      | 180    |
| W_910900003 | 3/8" | 59 | 73 | 14 | 45 | 16 | 10 | 12         | 1.7       | 3            | 0.15 ÷ 15    | 0.15 ÷ 15      | 370    |
| W_910900004 | 1/2" | 59 | 73 | 14 | 45 | 16 | 10 | 12         | 2.5       | 3            | 0.15 ÷ 15    | 0.15 ÷ 15      | 340    |
| W_910900005 | 3/4" | 79 | 76 | 18 | 55 | 16 | 10 | 18         | 5.5       | 3            | 0.15 ÷ 13    | 0.15 ÷ 13      | 600    |
| W_910900006 | 1"   | 96 | 85 | 20 | 72 | 16 | 10 | 25         | 10.2      | 3            | 0.15 ÷ 10    | 0.15 ÷ 10      | 1000   |

To complete the code enter:

- 0 for NBR gaskets E for EPDM gaskets

 ${\bf V}$  for FKM/FPM gaskets

\* The maximum allowable pressure for steam is 2.5 bar with EPDM gaskets

# SOLENOID VALVES, SERIES EV-FLUID, SERVO-ASSISTED ACTION

NOTES

DISTRIBUTORS

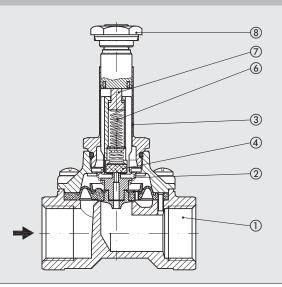
In this type of solenoid valve, the moving core is connected to the diaphragm and it directly intercepts the secondary orifice.

The same coil-actuated moving core drags the diaphragm that opens or closes the main orifice.

These two combined actions allow these two models to operate at a zero pressure.

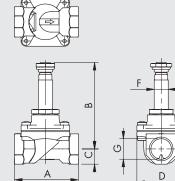
These valves are available with 2/2 NC function, brass body and FKM/FPM or NBR gaskets.




Ε U ΜA

Ρ Ν

| Hz | 2                                                                                        |
|----|------------------------------------------------------------------------------------------|
|    | DC: 27 W / AC: 30 VA                                                                     |
|    | 12 - 24VDC / 24 - 110 - 220 VAC 50/60 Hz                                                 |
| %  | DC: ±10 / AC: -10 ÷ +15                                                                  |
|    | IP 65 with connector                                                                     |
| °C | -10 ÷ +90                                                                                |
| °C | with coil C.I H: -10 ÷ +80                                                               |
|    | 25 cSt (mm <sup>2</sup> /s)                                                              |
|    | See dimensions and ordering codes                                                        |
| Nm | 1.5                                                                                      |
|    | Valves that can be used with neutral or slightly aggressive liquid and gas fluids.       |
|    | (Refer to the tables of chemical compatibility of materials in contact with the fluid on |
|    | on www.metalwork.it or contact Metal Work technical service)                             |
|    |                                                                                          |
|    |                                                                                          |
|    | %<br>°C<br>°C                                                                            |


#### **COMPONENTS**

- ① BODY: brass
- SPRING: stainless steel
   SLEEVE: stainless steel
- **④** GASKET
- (5) SPRING: stainless steel
- 6 MOBILE CORE: stainless steel
- ⑦ GASKET
- **⑧** RING NUT FOR COIL FIXING



#### VERSION 2/2 NC, BRASS VALVE BODY, FKM/FPM GASKETS











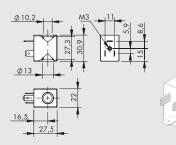
| Code        | G    | Α  | В   | С  | D  | E  | F  | Air hole Ø | Kv factor | Type of coil | Operating | pressure [bar] | Weight |
|-------------|------|----|-----|----|----|----|----|------------|-----------|--------------|-----------|----------------|--------|
|             |      |    |     |    |    |    |    | [mm]       | [m³/h]    |              | AC        | DC             | [g]    |
| WV910600003 | 3/8" | 59 | 83  | 14 | 45 | 13 | 10 | 12         | 2         | 5            | 0 ÷ 12    | 0 ÷ 10         | 400    |
| WV910600004 | 1/2" | 59 | 83  | 14 | 45 | 13 | 10 | 12         | 2.2       | 5            | 0 ÷ 12    | 0 ÷ 10         | 370    |
| WV910600005 | 3/4" | 79 | 90  | 18 | 55 | 13 | 10 | 18         | 4.5       | 5            | 0 ÷ 9     | -              | 610    |
| WV910600006 | 1"   | 96 | 101 | 20 | 72 | 13 | 10 | 25         | 8.5       | 5            | 0 ÷ 7     | -              | 1020   |
| WV910610005 | 3/4" | 96 | 85  | 20 | 72 | 16 | 10 | 18         | 4.5       | 5            | -         | 0 ÷ 9          | 610    |
| WV910610006 | 1"   | 96 | 85  | 20 | 72 | 16 | 10 | 25         | 8.5       | 5            | -         | 0 ÷ 8          | 1020   |

#### NOTE

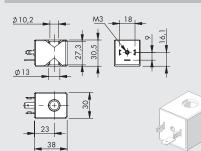
## **COILS AND CONNECTORS** FOR EV-FLUID SERIES **SOLENOID VALVES**

Е U Μ Ρ Ν Α

• Duty Cycle: 100%


• Duty Cycle: 100% Connector: DIN 43650 B

• Duty Cycle: 100% Connector: DIN 43650 B


Connector: DIN 43650 B

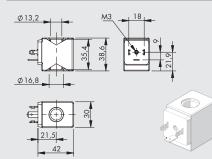
These coils have been optimized specifically for use with EV-Fluid series solenoid valves. They come in different voltage ratings and powers, depending on power supply needs and level of performance requested of the valve on which they are installed. They come into 4 types (type 2, type 3, type 4 and type 5). The types differ one from the other in terms of size, type of electrical connection, orifice and output power. ATEX and UL versions are available on request

#### **COILS SIDE 22 mm TYPE 3**

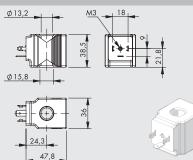


#### **COILS SIDE 30 mm TYPE 4**




• Voltage tolerance: -10% ÷ + 15% AC version / ± 10% DC version • Degree of protection: IP65 EN60529 with connector

| Code        | Abbrev.                              | Nominal voltage | Absorption | Index of protection |
|-------------|--------------------------------------|-----------------|------------|---------------------|
| W0911100001 | Coil 22 Ø10 Type 3, 6.5W 12VDC       | 12VDC           | 6.5W       | F                   |
| W0911100002 | Coil 22 Ø10 Type 3, 6.5W 24VDC       | 24VDC           | 6.5W       | F                   |
| W0911100003 | Coil 22 Ø10 Type 3, 8VA 24V 50/60Hz  | 24V 50/60Hz     | 8VA        | F                   |
| W0911100004 | Coil 22 Ø10 Type 3, 8VA 110V 50/60Hz | 110V 50/60Hz    | 8VA        | F                   |
| W0911100005 | Coil 22 Ø10 Type 3, 8VA 220V 50/60Hz | 220V 50/60Hz    | 8VA        | F                   |


• Voltage tolerance: -10% ÷ + 15% AC version / ± 10% DC version • Degree of protection: IP65 EN60529 with connector

| Code        | Abbrev.                               | Nominal voltage | Absorption | Index of   |
|-------------|---------------------------------------|-----------------|------------|------------|
|             |                                       |                 |            | protection |
| W0911100006 | Coil 30 Ø10 Type 4, 5W 12VDC          | 12VDC           | 5W         | F          |
| W0911100007 | Coil 30 Ø10 Type 4, 5W 24VDC          | 24VDC           | 5W         | F          |
| W0911100008 | Coil 30 Ø10 Type 4, 11VA 24V 50/60Hz  | 24V 50/60Hz     | 11VA       | F          |
| W0911100009 | Coil 30 Ø10 Type 4, 11VA 110V 50/60Hz | 110V 50/60Hz    | 11VA       | F          |
| W0911100010 | Coil 30 Ø10 Type 4, 11VA 220V 50/60Hz | 220V 50/60Hz    | 11VA       | F          |

#### **COILS SIDE 30 mm TYPE 2**



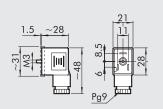
#### **COILS SIDE 36 mm TYPE 5**



| • Voltage tolerance: -10% ÷ + 15% AC version / ± 10% DC version       |
|-----------------------------------------------------------------------|
| <ul> <li>Degree of protection: IP65 EN60529 with connector</li> </ul> |

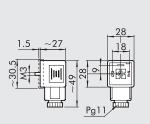
| • [ | Degree of protection: IP65 EN60529 with connector |
|-----|---------------------------------------------------|

| Code        | Abbrev.                               | Nominal voltage | Absorption | Classe<br>isolamento |
|-------------|---------------------------------------|-----------------|------------|----------------------|
| W0911100011 | Coil 30 Ø13 Type 2, 10W 12VDC         | 12VDC           | 10W        | F                    |
| W0911100012 | Coil 30 Ø13 Type 2, 10W 24VDC         | 24VDC           | 10W        | F                    |
| W0911100013 | Coil 30 Ø13 Type 2, 15VA 24V 50/60Hz  | 24V 50/60Hz     | 15VA       | F                    |
| W0911100014 | Coil 30 Ø13 Type 2, 15VA 110V 50/60Hz | 110V 50/60Hz    | 15VA       | F                    |
| W0911100015 | Coil 30 Ø13 Type 2, 15VA 220V 50/60Hz | 220V 50/60Hz    | 15VA       | F                    |


- Voltage tolerance: -10% ÷ + 15% AC version / ± 10% DC version • Degree of protection: IP65 EN60529 with connector
- Duty Cycle: 100%

Connector: DIN 43650 B

| Code        | Abbrev.                               | Nominal voltage | Absorption | Index of<br>protection |
|-------------|---------------------------------------|-----------------|------------|------------------------|
| W0911100016 | Coil 36 Ø13 Type 5, 27W 12VDC         | 12VDC           | 27W        | Н                      |
| W0911100017 | Coil 36 Ø13 Type 5, 27W 24VDC         | 24VDC           | 27W        | Н                      |
| W0911100018 | Coil 36 Ø13 Type 5, 30VA 24V 50/60Hz  | 24V 50/60Hz     | 30VA       | Н                      |
| W0911100019 | Coil 36 Ø13 Type 5, 30VA 110V 50/60Hz | 110V 50/60Hz    | 30VA       | Н                      |
| W0911100020 | Coil 36 Ø13 Type 5, 30VA 220V 50/60Hz | 220V 50/60Hz    | 30VA       | Н                      |


**B**3

#### CONNECTOR FOR COILS SIDE 22 mm FOR COIL TYPE 3



| Code        | Туре           | Colour      | Ø Cable |
|-------------|----------------|-------------|---------|
| W0970510011 | Standard       | Black       | PG9     |
| W0970510012 | LED 24V        | Transparent | PG9     |
| W0970510013 | LED 110V       | Transparent | PG9     |
| W0970510014 | LED 220V       | Transparent | PG9     |
| W0970510015 | LED + VDR 24V  | Transparent | PG9     |
| W0970510016 | LED + VDR 110V | Transparent | PG9     |
| W0970510017 | LED + VDR 220V | Transparent | PG9     |
|             |                |             |         |

#### CONNECTOR ON SIDE 30 mm PFOR COILS TYPE 2, 4, 5



| Code        | Туре           | Colour      | Ø Cable |
|-------------|----------------|-------------|---------|
| W0970520033 | Standard       | Black       | PG11    |
| W0970520034 | LED 24V        | Transparent | PG11    |
| W0970520035 | LED 110V       | Transparent | PG11    |
| W0970520036 | LED 220V       | Transparent | PG11    |
| W0970520037 | LED + VDR 24V  | Transparent | PG11    |
| W0970520038 | LED + VDR 110V | Transparent | PG11    |
| W0970520039 | LED + VDR 220V | Transparent | PG11    |
|             |                |             |         |

NOTES

DISTRIBUTORS

COILS AND CONNECTORS FOR EV-FLUID SERIES SOLENOID VALVES

**B3**.18



| NOTE  |                                                                                                                 |
|-------|-----------------------------------------------------------------------------------------------------------------|
| NOTES |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       | l anna an stàiteachadh ann an s |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |